Predicting Stroke Risk

Using individual patient data

Scott Breitbach 22-July-2022

Stroke Statistics

• Worldwide

- Second leading cause of death
- 11% of deaths (15 million people)
- 1 of 6 deaths related to cardiovascular disease
- United States
 - ~800,000 annually
 - Stroke every 40 seconds
 - Death every 3.5 minutes

Leading causes of death globally

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

10

0

0

Stroke Statistics (cont.)

- Of ~15 million annual stroke instances:
 - 1/3 result in death
 - 1/3 recover
 - 1/3 are left disabled
- A leading cause of long-term disability

- Known risk factors:
 - Cardiovascular/Health:
 - High blood pressure
 - High cholesterol
 - Obesity / diabetes
 - Age
 - Other:
 - Race
 - Where you live

Stroke Dataset: 10 Features

- 5 Categorical:
 - 2 multiclass
 - `work_type`, `smoking_status`
 - 2 binary
 - `ever_married`,
 `Residence_type`
 - Converted to 1/0
 - 1 multiclass converted to binary
 - `gender` (removed 'Other')
 - Converted to 1/0

- 5 Numeric:
 - 3 continuous
 - `age`, `avg_glucose_level`,
 `bmi`
 - 2 discrete, binary
 - `hypertension`, `heart_disease`
- Target Variable:
 - Binary (1/0)
 - stroke / no stroke
 - Extremely imbalanced
 - Stroke ~2% of dataset

Distributions

• Glucose is bimodal

- Children at lower risk
 - ~6,000 'children' in dataset
- Impacts multiple variables:
 - `age`
 - `hypertension`
 - `heart disease`
 - `ever_married`
 - `work_type`
 - Possibly `smoking_status` (unknown)

Data Preprocessing

• Imputing Null values

- `smoking_status` 30% Null
 - Null \rightarrow 'Other'
- `bmi` ~3% Null
 - Tried Logistic Regression
 - Landed on median
- Encoding
 - Binary features \rightarrow 1 / 0
 - Multiclass \rightarrow one-hot encoded

- Transformation
 - Box-Cox age, bmi, & glucose
 - Scaled all features -1 to 1
- Balancing (~2% stroke)
 - Oversample stroke
 - Oversample using SMOTE
 - Oversample / Undersample
 - Oversample to 10% of majority using SMOTE
 - Undersample majority so stroke is 50% of majority
 - Leave imbalanced and use weights

Model Selection / Evaluation

Metrics:

- Accuracy
 - 98%, predicting no strokes
- Recall
- Matthews Correlation
 Coefficient
- Area Under Curve (Receiver Operating Characteristic)

Hyperparameter Tuning:

- Grid Search CV
 - Random Search CV
- Scoring with multiple metrics
- Voting Classifier (with weighting)

Conclusions

- Huge imbalance, not a perfect model
- Need to find a balance in the results
- More features could be helpful
- Possible inherent bias in the data
 - Could be high risk but haven't had a stroke yet

Implementation

- Allow people a level of control over their personal healthcare
- A healthcare app:
 - Answer health questionnaire
 - Store health metrics (weight, blood pressure, health screening results, etc.)
 - Link activity apps (pulse, steps, etc.)
 - Predict risk for stroke, heart disease, and others
 - Provide personalized suggestions for lowering risk
 - A tool to discuss with your primary care physician

